Overexpression of the riboflavin biosynthetic pathway in Pichia pastoris
نویسندگان
چکیده
BACKGROUND High cell density cultures of Pichia pastoris grown on methanol tend to develop yellow colored supernatants, attributed to the release of free flavins. The potential of P. pastoris for flavin overproduction is therefore given, but not pronounced when the yeast is grown on glucose. The aim of this study is to characterize the relative regulatory impact of each riboflavin synthesis gene. Deeper insight into pathway control and the potential of deregulation is established by overexpression of the single genes as well as a combined deregulation of up to all six riboflavin synthesis genes. RESULTS Overexpression of the first gene of the riboflavin biosynthetic pathway (RIB1) is already sufficient to obtain yellow colonies and the accumulation of riboflavin in the supernatant of shake flask cultures growing on glucose. Sequential deregulation of all the genes, by exchange of their native promoter with the strong and constitutive glyceraldehyde-3-phosphate dehydrogenase promoter (PGAP) increases the riboflavin accumulation significantly. CONCLUSION The regulation of the pathway is distributed over more than one gene. High cell density cultivations of a P. pastoris strain overexpressing all six RIB genes allow the accumulation of 175 mg/L riboflavin in the supernatant. The basis for rational engineering of riboflavin production in P. pastoris has thus been established.
منابع مشابه
Metabolic engineering of Pichia pastoris for production of isobutanol and isobutyl acetate
Background Interests in renewable fuels have exploded in recent years as the serious effects of global climate change become apparent. Microbial production of high-energy fuels by economically efficient bioprocesses has emerged as an attractive alternative to the traditional production of transportation fuels. Here, we engineered Pichia pastoris, an industrial workhorse in heterologous enzyme p...
متن کاملP-65: Effective Parameters on the Bovine Follicle Stimulating Hormone Expression in The Pichia Pastoris System
Background: Bovine follicle-stimulating hormone (bFSH) is a heterodimer hormone that consists of a common -subunit which noncovalently associated with the hormone-specific -subunit. During the past 15 years, the methylotrophic yeast Pichia pastoris has become an important host organism for recombinant protein production because it is able to use methanol as a sole carbon and energy source. Th...
متن کاملEvaluation of Sorbitol-Methanol Co-Feeding Strategy on Production of Recombinant Human Growth Hormone in Pichia Pastoris
Recombinant protein production in Pichia pastoris is based on alcohol oxidase promoterswhich are regulated by methanol. However, the use of methanol has several disadvantages,which is why current trends in bioprocess development with Pichia pastoris (P. pastoris) arefocusing on methanol mixed feeding strategies. This work aimed to develop a new experimentalmethod and compare the effect of vario...
متن کاملOptimizing cofactor availability for the production of recombinant heme peroxidase in Pichia pastoris
BACKGROUND Insufficient incorporation of heme is considered a central impeding cause in the recombinant production of active heme proteins. Currently, two approaches are commonly taken to overcome this bottleneck; metabolic engineering of the heme biosynthesis pathway in the host organism to enhance intracellular heme production, and supplementation of the growth medium with the desired cofacto...
متن کاملRivoflavin may interfere with on-line monitoring of secreted green fluorescence protein fusion proteins in Pichia pastoris
BACKGROUND Together with the development of optical sensors, fluorometry is becoming an increasingly attractive tool for the monitoring of cultivation processes. In this context, the green fluorescence protein (GFP) has been proposed as a molecular reporter when fused to target proteins to study their subcellular localization or secretion behaviour. The present work evaluates the use of the GFP...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Microbial Cell Factories
دوره 7 شماره
صفحات -
تاریخ انتشار 2008